STAT 200 - Chapter 6
Earlier, we explored the association between categorical variables;
We will now extend this discussion to quantitative variables;
Do people with bigger brains tend to be more intelligent?
Do students with higher attendance tend to have better performance in a course?
Do taller athletes tend to be faster in 100m?
Do taller penguins tend to be heavier?
| Miles per Gallon | Horsepower |
|---|---|
| 18 | 130 |
| 15 | 165 |
| 18 | 150 |
| 16 | 150 |
| 17 | 140 |
| 15 | 198 |
| 14 | 220 |
| 14 | 215 |
| 14 | 225 |
| 15 | 190 |
| 15 | 170 |
| 14 | 160 |
| 15 | 150 |
| 14 | 225 |
| 24 | 95 |
| 22 | 95 |
| 18 | 97 |
| 21 | 85 |
| 27 | 88 |
| 26 | 46 |
| 25 | 87 |
| 24 | 90 |
| 25 | 95 |
| 26 | 113 |
| 21 | 90 |
| 10 | 215 |
| 10 | 200 |
| 11 | 210 |
| 9 | 193 |
| 27 | 88 |
| 28 | 90 |
| 25 | 95 |
| 19 | 100 |
| 16 | 105 |
| 17 | 100 |
| 19 | 88 |
| 18 | 100 |
| 14 | 165 |
| 14 | 175 |
| 14 | 153 |
| 14 | 150 |
| 12 | 180 |
| 13 | 170 |
| 13 | 175 |
| 18 | 110 |
| 22 | 72 |
| 19 | 100 |
| 18 | 88 |
| 23 | 86 |
| 28 | 90 |
| 30 | 70 |
| 30 | 76 |
| 31 | 65 |
| 35 | 69 |
| 27 | 60 |
| 26 | 70 |
| 24 | 95 |
| 25 | 80 |
| 23 | 54 |
| 20 | 90 |
| 21 | 86 |
| 13 | 165 |
| 14 | 175 |
| 15 | 150 |
| 14 | 153 |
| 17 | 150 |
| 11 | 208 |
| 13 | 155 |
| 12 | 160 |
| 13 | 190 |
| 19 | 97 |
| 15 | 150 |
| 13 | 130 |
| 13 | 140 |
| 14 | 150 |
| 18 | 112 |
| 22 | 76 |
| 21 | 87 |
| 26 | 69 |
| 22 | 86 |
| 28 | 92 |
| 23 | 97 |
| 28 | 80 |
| 27 | 88 |
| 13 | 175 |
| 14 | 150 |
| 13 | 145 |
| 14 | 137 |
| 15 | 150 |
| 12 | 198 |
| 13 | 150 |
| 13 | 158 |
| 14 | 150 |
| 13 | 215 |
| 12 | 225 |
| 13 | 175 |
| 18 | 105 |
| 16 | 100 |
| 18 | 100 |
| 18 | 88 |
| 23 | 95 |
| 26 | 46 |
| 11 | 150 |
| 12 | 167 |
| 13 | 170 |
| 12 | 180 |
| 18 | 100 |
| 20 | 88 |
| 21 | 72 |
| 22 | 94 |
| 18 | 90 |
| 19 | 85 |
| 21 | 107 |
| 26 | 90 |
| 15 | 145 |
| 16 | 230 |
| 29 | 49 |
| 24 | 75 |
| 20 | 91 |
| 19 | 112 |
| 15 | 150 |
| 24 | 110 |
| 20 | 122 |
| 11 | 180 |
| 20 | 95 |
| 19 | 100 |
| 15 | 100 |
| 31 | 67 |
| 26 | 80 |
| 32 | 65 |
| 25 | 75 |
| 16 | 100 |
| 16 | 110 |
| 18 | 105 |
| 16 | 140 |
| 13 | 150 |
| 14 | 150 |
| 14 | 140 |
| 14 | 150 |
| 29 | 83 |
| 26 | 67 |
| 26 | 78 |
| 31 | 52 |
| 32 | 61 |
| 28 | 75 |
| 24 | 75 |
| 26 | 75 |
| 24 | 97 |
| 26 | 93 |
| 31 | 67 |
| 19 | 95 |
| 18 | 105 |
| 15 | 72 |
| 15 | 72 |
| 16 | 170 |
| 15 | 145 |
| 16 | 150 |
| 14 | 148 |
| 17 | 110 |
| 16 | 105 |
| 15 | 110 |
| 18 | 95 |
| 21 | 110 |
| 20 | 110 |
| 13 | 129 |
| 29 | 75 |
| 23 | 83 |
| 20 | 100 |
| 23 | 78 |
| 24 | 96 |
| 25 | 71 |
| 24 | 97 |
| 18 | 97 |
| 29 | 70 |
| 19 | 90 |
| 23 | 95 |
| 23 | 88 |
| 22 | 98 |
| 25 | 115 |
| 33 | 53 |
| 28 | 86 |
| 25 | 81 |
| 25 | 92 |
| 26 | 79 |
| 27 | 83 |
| 17.5 | 140 |
| 16 | 150 |
| 15.5 | 120 |
| 14.5 | 152 |
| 22 | 100 |
| 22 | 105 |
| 24 | 81 |
| 22.5 | 90 |
| 29 | 52 |
| 24.5 | 60 |
| 29 | 70 |
| 33 | 53 |
| 20 | 100 |
| 18 | 78 |
| 18.5 | 110 |
| 17.5 | 95 |
| 29.5 | 71 |
| 32 | 70 |
| 28 | 75 |
| 26.5 | 72 |
| 20 | 102 |
| 13 | 150 |
| 19 | 88 |
| 19 | 108 |
| 16.5 | 120 |
| 16.5 | 180 |
| 13 | 145 |
| 13 | 130 |
| 13 | 150 |
| 31.5 | 68 |
| 30 | 80 |
| 36 | 58 |
| 25.5 | 96 |
| 33.5 | 70 |
| 17.5 | 145 |
| 17 | 110 |
| 15.5 | 145 |
| 15 | 130 |
| 17.5 | 110 |
| 20.5 | 105 |
| 19 | 100 |
| 18.5 | 98 |
| 16 | 180 |
| 15.5 | 170 |
| 15.5 | 190 |
| 16 | 149 |
| 29 | 78 |
| 24.5 | 88 |
| 26 | 75 |
| 25.5 | 89 |
| 30.5 | 63 |
| 33.5 | 83 |
| 30 | 67 |
| 30.5 | 78 |
| 22 | 97 |
| 21.5 | 110 |
| 21.5 | 110 |
| 43.1 | 48 |
| 36.1 | 66 |
| 32.8 | 52 |
| 39.4 | 70 |
| 36.1 | 60 |
| 19.9 | 110 |
| 19.4 | 140 |
| 20.2 | 139 |
| 19.2 | 105 |
| 20.5 | 95 |
| 20.2 | 85 |
| 25.1 | 88 |
| 20.5 | 100 |
| 19.4 | 90 |
| 20.6 | 105 |
| 20.8 | 85 |
| 18.6 | 110 |
| 18.1 | 120 |
| 19.2 | 145 |
| 17.7 | 165 |
| 18.1 | 139 |
| 17.5 | 140 |
| 30 | 68 |
| 27.5 | 95 |
| 27.2 | 97 |
| 30.9 | 75 |
| 21.1 | 95 |
| 23.2 | 105 |
| 23.8 | 85 |
| 23.9 | 97 |
| 20.3 | 103 |
| 17 | 125 |
| 21.6 | 115 |
| 16.2 | 133 |
| 31.5 | 71 |
| 29.5 | 68 |
| 21.5 | 115 |
| 19.8 | 85 |
| 22.3 | 88 |
| 20.2 | 90 |
| 20.6 | 110 |
| 17 | 130 |
| 17.6 | 129 |
| 16.5 | 138 |
| 18.2 | 135 |
| 16.9 | 155 |
| 15.5 | 142 |
| 19.2 | 125 |
| 18.5 | 150 |
| 31.9 | 71 |
| 34.1 | 65 |
| 35.7 | 80 |
| 27.4 | 80 |
| 25.4 | 77 |
| 23 | 125 |
| 27.2 | 71 |
| 23.9 | 90 |
| 34.2 | 70 |
| 34.5 | 70 |
| 31.8 | 65 |
| 37.3 | 69 |
| 28.4 | 90 |
| 28.8 | 115 |
| 26.8 | 115 |
| 33.5 | 90 |
| 41.5 | 76 |
| 38.1 | 60 |
| 32.1 | 70 |
| 37.2 | 65 |
| 28 | 90 |
| 26.4 | 88 |
| 24.3 | 90 |
| 19.1 | 90 |
| 34.3 | 78 |
| 29.8 | 90 |
| 31.3 | 75 |
| 37 | 92 |
| 32.2 | 75 |
| 46.6 | 65 |
| 27.9 | 105 |
| 40.8 | 65 |
| 44.3 | 48 |
| 43.4 | 48 |
| 36.4 | 67 |
| 30 | 67 |
| 44.6 | 67 |
| 33.8 | 67 |
| 29.8 | 62 |
| 32.7 | 132 |
| 23.7 | 100 |
| 35 | 88 |
| 32.4 | 72 |
| 27.2 | 84 |
| 26.6 | 84 |
| 25.8 | 92 |
| 23.5 | 110 |
| 30 | 84 |
| 39.1 | 58 |
| 39 | 64 |
| 35.1 | 60 |
| 32.3 | 67 |
| 37 | 65 |
| 37.7 | 62 |
| 34.1 | 68 |
| 34.7 | 63 |
| 34.4 | 65 |
| 29.9 | 65 |
| 33 | 74 |
| 33.7 | 75 |
| 32.4 | 75 |
| 32.9 | 100 |
| 31.6 | 74 |
| 28.1 | 80 |
| 30.7 | 76 |
| 25.4 | 116 |
| 24.2 | 120 |
| 22.4 | 110 |
| 26.6 | 105 |
| 20.2 | 88 |
| 17.6 | 85 |
| 28 | 88 |
| 27 | 88 |
| 34 | 88 |
| 31 | 85 |
| 29 | 84 |
| 27 | 90 |
| 24 | 92 |
| 36 | 74 |
| 37 | 68 |
| 31 | 68 |
| 38 | 63 |
| 36 | 70 |
| 36 | 88 |
| 36 | 75 |
| 34 | 70 |
| 38 | 67 |
| 32 | 67 |
| 38 | 67 |
| 25 | 110 |
| 38 | 85 |
| 26 | 92 |
| 22 | 112 |
| 32 | 96 |
| 36 | 84 |
| 27 | 90 |
| 27 | 86 |
| 44 | 52 |
| 32 | 84 |
| 28 | 79 |
| 31 | 82 |
| Weight_in_lbs | Acceleration |
|---|---|
| 3504 | 12 |
| 3693 | 11.5 |
| 3436 | 11 |
| 3433 | 12 |
| 3449 | 10.5 |
| 4341 | 10 |
| 4354 | 9 |
| 4312 | 8.5 |
| 4425 | 10 |
| 3850 | 8.5 |
| 3090 | 17.5 |
| 4142 | 11.5 |
| 4034 | 11 |
| 4166 | 10.5 |
| 3850 | 11 |
| 3563 | 10 |
| 3609 | 8 |
| 3353 | 8 |
| 3761 | 9.5 |
| 3086 | 10 |
| 2372 | 15 |
| 2833 | 15.5 |
| 2774 | 15.5 |
| 2587 | 16 |
| 2130 | 14.5 |
| 1835 | 20.5 |
| 2672 | 17.5 |
| 2430 | 14.5 |
| 2375 | 17.5 |
| 2234 | 12.5 |
| 2648 | 15 |
| 4615 | 14 |
| 4376 | 15 |
| 4382 | 13.5 |
| 4732 | 18.5 |
| 2130 | 14.5 |
| 2264 | 15.5 |
| 2228 | 14 |
| 2046 | 19 |
| 1978 | 20 |
| 2634 | 13 |
| 3439 | 15.5 |
| 3329 | 15.5 |
| 3302 | 15.5 |
| 3288 | 15.5 |
| 4209 | 12 |
| 4464 | 11.5 |
| 4154 | 13.5 |
| 4096 | 13 |
| 4955 | 11.5 |
| 4746 | 12 |
| 5140 | 12 |
| 2962 | 13.5 |
| 2408 | 19 |
| 3282 | 15 |
| 3139 | 14.5 |
| 2220 | 14 |
| 2123 | 14 |
| 2074 | 19.5 |
| 2065 | 14.5 |
| 1773 | 19 |
| 1613 | 18 |
| 1834 | 19 |
| 1955 | 20.5 |
| 2278 | 15.5 |
| 2126 | 17 |
| 2254 | 23.5 |
| 2408 | 19.5 |
| 2226 | 16.5 |
| 4274 | 12 |
| 4385 | 12 |
| 4135 | 13.5 |
| 4129 | 13 |
| 3672 | 11.5 |
| 4633 | 11 |
| 4502 | 13.5 |
| 4456 | 13.5 |
| 4422 | 12.5 |
| 2330 | 13.5 |
| 3892 | 12.5 |
| 4098 | 14 |
| 4294 | 16 |
| 4077 | 14 |
| 2933 | 14.5 |
| 2511 | 18 |
| 2979 | 19.5 |
| 2189 | 18 |
| 2395 | 16 |
| 2288 | 17 |
| 2506 | 14.5 |
| 2164 | 15 |
| 2100 | 16.5 |
| 4100 | 13 |
| 3672 | 11.5 |
| 3988 | 13 |
| 4042 | 14.5 |
| 3777 | 12.5 |
| 4952 | 11.5 |
| 4464 | 12 |
| 4363 | 13 |
| 4237 | 14.5 |
| 4735 | 11 |
| 4951 | 11 |
| 3821 | 11 |
| 3121 | 16.5 |
| 3278 | 18 |
| 2945 | 16 |
| 3021 | 16.5 |
| 2904 | 16 |
| 1950 | 21 |
| 4997 | 14 |
| 4906 | 12.5 |
| 4654 | 13 |
| 4499 | 12.5 |
| 2789 | 15 |
| 2279 | 19 |
| 2401 | 19.5 |
| 2379 | 16.5 |
| 2124 | 13.5 |
| 2310 | 18.5 |
| 2472 | 14 |
| 2265 | 15.5 |
| 4082 | 13 |
| 4278 | 9.5 |
| 1867 | 19.5 |
| 2158 | 15.5 |
| 2582 | 14 |
| 2868 | 15.5 |
| 3399 | 11 |
| 2660 | 14 |
| 2807 | 13.5 |
| 3664 | 11 |
| 3102 | 16.5 |
| 2875 | 17 |
| 2901 | 16 |
| 3336 | 17 |
| 1950 | 19 |
| 2451 | 16.5 |
| 1836 | 21 |
| 2542 | 17 |
| 3781 | 17 |
| 3632 | 18 |
| 3613 | 16.5 |
| 4141 | 14 |
| 4699 | 14.5 |
| 4457 | 13.5 |
| 4638 | 16 |
| 4257 | 15.5 |
| 2219 | 16.5 |
| 1963 | 15.5 |
| 2300 | 14.5 |
| 1649 | 16.5 |
| 2003 | 19 |
| 2125 | 14.5 |
| 2108 | 15.5 |
| 2246 | 14 |
| 2489 | 15 |
| 2391 | 15.5 |
| 2000 | 16 |
| 3264 | 16 |
| 3459 | 16 |
| 3432 | 21 |
| 3158 | 19.5 |
| 4668 | 11.5 |
| 4440 | 14 |
| 4498 | 14.5 |
| 4657 | 13.5 |
| 3907 | 21 |
| 3897 | 18.5 |
| 3730 | 19 |
| 3785 | 19 |
| 3039 | 15 |
| 3221 | 13.5 |
| 3169 | 12 |
| 2171 | 16 |
| 2639 | 17 |
| 2914 | 16 |
| 2592 | 18.5 |
| 2702 | 13.5 |
| 2223 | 16.5 |
| 2545 | 17 |
| 2984 | 14.5 |
| 1937 | 14 |
| 3211 | 17 |
| 2694 | 15 |
| 2957 | 17 |
| 2945 | 14.5 |
| 2671 | 13.5 |
| 1795 | 17.5 |
| 2464 | 15.5 |
| 2220 | 16.9 |
| 2572 | 14.9 |
| 2255 | 17.7 |
| 2202 | 15.3 |
| 4215 | 13 |
| 4190 | 13 |
| 3962 | 13.9 |
| 4215 | 12.8 |
| 3233 | 15.4 |
| 3353 | 14.5 |
| 3012 | 17.6 |
| 3085 | 17.6 |
| 2035 | 22.2 |
| 2164 | 22.1 |
| 1937 | 14.2 |
| 1795 | 17.4 |
| 3651 | 17.7 |
| 3574 | 21 |
| 3645 | 16.2 |
| 3193 | 17.8 |
| 1825 | 12.2 |
| 1990 | 17 |
| 2155 | 16.4 |
| 2565 | 13.6 |
| 3150 | 15.7 |
| 3940 | 13.2 |
| 3270 | 21.9 |
| 2930 | 15.5 |
| 3820 | 16.7 |
| 4380 | 12.1 |
| 4055 | 12 |
| 3870 | 15 |
| 3755 | 14 |
| 2045 | 18.5 |
| 2155 | 14.8 |
| 1825 | 18.6 |
| 2300 | 15.5 |
| 1945 | 16.8 |
| 3880 | 12.5 |
| 4060 | 19 |
| 4140 | 13.7 |
| 4295 | 14.9 |
| 3520 | 16.4 |
| 3425 | 16.9 |
| 3630 | 17.7 |
| 3525 | 19 |
| 4220 | 11.1 |
| 4165 | 11.4 |
| 4325 | 12.2 |
| 4335 | 14.5 |
| 1940 | 14.5 |
| 2740 | 16 |
| 2265 | 18.2 |
| 2755 | 15.8 |
| 2051 | 17 |
| 2075 | 15.9 |
| 1985 | 16.4 |
| 2190 | 14.1 |
| 2815 | 14.5 |
| 2600 | 12.8 |
| 2720 | 13.5 |
| 1985 | 21.5 |
| 1800 | 14.4 |
| 1985 | 19.4 |
| 2070 | 18.6 |
| 1800 | 16.4 |
| 3365 | 15.5 |
| 3735 | 13.2 |
| 3570 | 12.8 |
| 3535 | 19.2 |
| 3155 | 18.2 |
| 2965 | 15.8 |
| 2720 | 15.4 |
| 3430 | 17.2 |
| 3210 | 17.2 |
| 3380 | 15.8 |
| 3070 | 16.7 |
| 3620 | 18.7 |
| 3410 | 15.1 |
| 3425 | 13.2 |
| 3445 | 13.4 |
| 3205 | 11.2 |
| 4080 | 13.7 |
| 2155 | 16.5 |
| 2560 | 14.2 |
| 2300 | 14.7 |
| 2230 | 14.5 |
| 2515 | 14.8 |
| 2745 | 16.7 |
| 2855 | 17.6 |
| 2405 | 14.9 |
| 2830 | 15.9 |
| 3140 | 13.6 |
| 2795 | 15.7 |
| 3410 | 15.8 |
| 1990 | 14.9 |
| 2135 | 16.6 |
| 3245 | 15.4 |
| 2990 | 18.2 |
| 2890 | 17.3 |
| 3265 | 18.2 |
| 3360 | 16.6 |
| 3840 | 15.4 |
| 3725 | 13.4 |
| 3955 | 13.2 |
| 3830 | 15.2 |
| 4360 | 14.9 |
| 4054 | 14.3 |
| 3605 | 15 |
| 3940 | 13 |
| 1925 | 14 |
| 1975 | 15.2 |
| 1915 | 14.4 |
| 2670 | 15 |
| 3530 | 20.1 |
| 3900 | 17.4 |
| 3190 | 24.8 |
| 3420 | 22.2 |
| 2200 | 13.2 |
| 2150 | 14.9 |
| 2020 | 19.2 |
| 2130 | 14.7 |
| 2670 | 16 |
| 2595 | 11.3 |
| 2700 | 12.9 |
| 2556 | 13.2 |
| 2144 | 14.7 |
| 1968 | 18.8 |
| 2120 | 15.5 |
| 2019 | 16.4 |
| 2678 | 16.5 |
| 2870 | 18.1 |
| 3003 | 20.1 |
| 3381 | 18.7 |
| 2188 | 15.8 |
| 2711 | 15.5 |
| 2542 | 17.5 |
| 2434 | 15 |
| 2265 | 15.2 |
| 2110 | 17.9 |
| 2800 | 14.4 |
| 2110 | 19.2 |
| 2085 | 21.7 |
| 2335 | 23.7 |
| 2950 | 19.9 |
| 3250 | 21.8 |
| 1850 | 13.8 |
| 1835 | 17.3 |
| 2145 | 18 |
| 1845 | 15.3 |
| 2910 | 11.4 |
| 2420 | 12.5 |
| 2500 | 15.1 |
| 2905 | 14.3 |
| 2290 | 17 |
| 2490 | 15.7 |
| 2635 | 16.4 |
| 2620 | 14.4 |
| 2725 | 12.6 |
| 2385 | 12.9 |
| 1755 | 16.9 |
| 1875 | 16.4 |
| 1760 | 16.1 |
| 2065 | 17.8 |
| 1975 | 19.4 |
| 2050 | 17.3 |
| 1985 | 16 |
| 2215 | 14.9 |
| 2045 | 16.2 |
| 2380 | 20.7 |
| 2190 | 14.2 |
| 2320 | 15.8 |
| 2210 | 14.4 |
| 2350 | 16.8 |
| 2615 | 14.8 |
| 2635 | 18.3 |
| 3230 | 20.4 |
| 2800 | 15.4 |
| 3160 | 19.6 |
| 2900 | 12.6 |
| 2930 | 13.8 |
| 3415 | 15.8 |
| 3725 | 19 |
| 3060 | 17.1 |
| 3465 | 16.6 |
| 2605 | 19.6 |
| 2640 | 18.6 |
| 2395 | 18 |
| 2575 | 16.2 |
| 2525 | 16 |
| 2735 | 18 |
| 2865 | 16.4 |
| 3035 | 20.5 |
| 1980 | 15.3 |
| 2025 | 18.2 |
| 1970 | 17.6 |
| 2125 | 14.7 |
| 2125 | 17.3 |
| 2160 | 14.5 |
| 2205 | 14.5 |
| 2245 | 16.9 |
| 1965 | 15 |
| 1965 | 15.7 |
| 1995 | 16.2 |
| 2945 | 16.4 |
| 3015 | 17 |
| 2585 | 14.5 |
| 2835 | 14.7 |
| 2665 | 13.9 |
| 2370 | 13 |
| 2950 | 17.3 |
| 2790 | 15.6 |
| 2130 | 24.6 |
| 2295 | 11.6 |
| 2625 | 18.6 |
| 2720 | 19.4 |
| body_mass | flipper_length |
|---|---|
| 3750 | 181 |
| 3800 | 186 |
| 3250 | 195 |
| 3450 | 193 |
| 3650 | 190 |
| 3625 | 181 |
| 4675 | 195 |
| 3200 | 182 |
| 3800 | 191 |
| 4400 | 198 |
| 3700 | 185 |
| 3450 | 195 |
| 4500 | 197 |
| 3325 | 184 |
| 4200 | 194 |
| 3400 | 174 |
| 3600 | 180 |
| 3800 | 189 |
| 3950 | 185 |
| 3800 | 180 |
| 3800 | 187 |
| 3550 | 183 |
| 3200 | 187 |
| 3150 | 172 |
| 3950 | 180 |
| 3250 | 178 |
| 3900 | 178 |
| 3300 | 188 |
| 3900 | 184 |
| 3325 | 195 |
| 4150 | 196 |
| 3950 | 190 |
| 3550 | 180 |
| 3300 | 181 |
| 4650 | 184 |
| 3150 | 182 |
| 3900 | 195 |
| 3100 | 186 |
| 4400 | 196 |
| 3000 | 185 |
| 4600 | 190 |
| 3425 | 182 |
| 3450 | 190 |
| 4150 | 191 |
| 3500 | 186 |
| 4300 | 188 |
| 3450 | 190 |
| 4050 | 200 |
| 2900 | 187 |
| 3700 | 191 |
| 3550 | 186 |
| 3800 | 193 |
| 2850 | 181 |
| 3750 | 194 |
| 3150 | 185 |
| 4400 | 195 |
| 3600 | 185 |
| 4050 | 192 |
| 2850 | 184 |
| 3950 | 192 |
| 3350 | 195 |
| 4100 | 188 |
| 3050 | 190 |
| 4450 | 198 |
| 3600 | 190 |
| 3900 | 190 |
| 3550 | 196 |
| 4150 | 197 |
| 3700 | 190 |
| 4250 | 195 |
| 3700 | 191 |
| 3900 | 184 |
| 3550 | 187 |
| 4000 | 195 |
| 3200 | 189 |
| 4700 | 196 |
| 3800 | 187 |
| 4200 | 193 |
| 3350 | 191 |
| 3550 | 194 |
| 3800 | 190 |
| 3500 | 189 |
| 3950 | 189 |
| 3600 | 190 |
| 3550 | 202 |
| 4300 | 205 |
| 3400 | 185 |
| 4450 | 186 |
| 3300 | 187 |
| 4300 | 208 |
| 3700 | 190 |
| 4350 | 196 |
| 2900 | 178 |
| 4100 | 192 |
| 3725 | 192 |
| 4725 | 203 |
| 3075 | 183 |
| 4250 | 190 |
| 2925 | 193 |
| 3550 | 184 |
| 3750 | 199 |
| 3900 | 190 |
| 3175 | 181 |
| 4775 | 197 |
| 3825 | 198 |
| 4600 | 191 |
| 3200 | 193 |
| 4275 | 197 |
| 3900 | 191 |
| 4075 | 196 |
| 2900 | 188 |
| 3775 | 199 |
| 3350 | 189 |
| 3325 | 189 |
| 3150 | 187 |
| 3500 | 198 |
| 3450 | 176 |
| 3875 | 202 |
| 3050 | 186 |
| 4000 | 199 |
| 3275 | 191 |
| 4300 | 195 |
| 3050 | 191 |
| 4000 | 210 |
| 3325 | 190 |
| 3500 | 197 |
| 3500 | 193 |
| 4475 | 199 |
| 3425 | 187 |
| 3900 | 190 |
| 3175 | 191 |
| 3975 | 200 |
| 3400 | 185 |
| 4250 | 193 |
| 3400 | 193 |
| 3475 | 187 |
| 3050 | 188 |
| 3725 | 190 |
| 3000 | 192 |
| 3650 | 185 |
| 4250 | 190 |
| 3475 | 184 |
| 3450 | 195 |
| 3750 | 193 |
| 3700 | 187 |
| 4000 | 201 |
| 4500 | 211 |
| 5700 | 230 |
| 4450 | 210 |
| 5700 | 218 |
| 5400 | 215 |
| 4550 | 210 |
| 4800 | 211 |
| 5200 | 219 |
| 4400 | 209 |
| 5150 | 215 |
| 4650 | 214 |
| 5550 | 216 |
| 4650 | 214 |
| 5850 | 213 |
| 4200 | 210 |
| 5850 | 217 |
| 4150 | 210 |
| 6300 | 221 |
| 4800 | 209 |
| 5350 | 222 |
| 5700 | 218 |
| 5000 | 215 |
| 4400 | 213 |
| 5050 | 215 |
| 5000 | 215 |
| 5100 | 215 |
| 5650 | 215 |
| 4600 | 210 |
| 5550 | 220 |
| 5250 | 222 |
| 4700 | 209 |
| 5050 | 207 |
| 6050 | 230 |
| 5150 | 220 |
| 5400 | 220 |
| 4950 | 213 |
| 5250 | 219 |
| 4350 | 208 |
| 5350 | 208 |
| 3950 | 208 |
| 5700 | 225 |
| 4300 | 210 |
| 4750 | 216 |
| 5550 | 222 |
| 4900 | 217 |
| 4200 | 210 |
| 5400 | 225 |
| 5100 | 213 |
| 5300 | 215 |
| 4850 | 210 |
| 5300 | 220 |
| 4400 | 210 |
| 5000 | 225 |
| 4900 | 217 |
| 5050 | 220 |
| 4300 | 208 |
| 5000 | 220 |
| 4450 | 208 |
| 5550 | 224 |
| 4200 | 208 |
| 5300 | 221 |
| 4400 | 214 |
| 5650 | 231 |
| 4700 | 219 |
| 5700 | 230 |
| 5800 | 229 |
| 4700 | 220 |
| 5550 | 223 |
| 4750 | 216 |
| 5000 | 221 |
| 5100 | 221 |
| 5200 | 217 |
| 4700 | 216 |
| 5800 | 230 |
| 4600 | 209 |
| 6000 | 220 |
| 4750 | 215 |
| 5950 | 223 |
| 4625 | 212 |
| 5450 | 221 |
| 4725 | 212 |
| 5350 | 224 |
| 4750 | 212 |
| 5600 | 228 |
| 4600 | 218 |
| 5300 | 218 |
| 4875 | 212 |
| 5550 | 230 |
| 4950 | 218 |
| 5400 | 228 |
| 4750 | 212 |
| 5650 | 224 |
| 4850 | 214 |
| 5200 | 226 |
| 4925 | 216 |
| 4875 | 222 |
| 4625 | 203 |
| 5250 | 225 |
| 4850 | 219 |
| 5600 | 228 |
| 4975 | 215 |
| 5500 | 228 |
| 5500 | 215 |
| 4700 | 210 |
| 5500 | 219 |
| 4575 | 208 |
| 5500 | 209 |
| 5000 | 216 |
| 5950 | 229 |
| 4650 | 213 |
| 5500 | 230 |
| 4375 | 217 |
| 5850 | 230 |
| 6000 | 222 |
| 4925 | 214 |
| 4850 | 215 |
| 5750 | 222 |
| 5200 | 212 |
| 5400 | 213 |
| 3500 | 192 |
| 3900 | 196 |
| 3650 | 193 |
| 3525 | 188 |
| 3725 | 197 |
| 3950 | 198 |
| 3250 | 178 |
| 3750 | 197 |
| 4150 | 195 |
| 3700 | 198 |
| 3800 | 193 |
| 3775 | 194 |
| 3700 | 185 |
| 4050 | 201 |
| 3575 | 190 |
| 4050 | 201 |
| 3300 | 197 |
| 3700 | 181 |
| 3450 | 190 |
| 4400 | 195 |
| 3600 | 181 |
| 3400 | 191 |
| 2900 | 187 |
| 3800 | 193 |
| 3300 | 195 |
| 4150 | 197 |
| 3400 | 200 |
| 3800 | 200 |
| 3700 | 191 |
| 4550 | 205 |
| 3200 | 187 |
| 4300 | 201 |
| 3350 | 187 |
| 4100 | 203 |
| 3600 | 195 |
| 3900 | 199 |
| 3850 | 195 |
| 4800 | 210 |
| 2700 | 192 |
| 4500 | 205 |
| 3950 | 210 |
| 3650 | 187 |
| 3550 | 196 |
| 3500 | 196 |
| 3675 | 196 |
| 4450 | 201 |
| 3400 | 190 |
| 4300 | 212 |
| 3250 | 187 |
| 3675 | 198 |
| 3325 | 199 |
| 3950 | 201 |
| 3600 | 193 |
| 4050 | 203 |
| 3350 | 187 |
| 3450 | 197 |
| 3250 | 191 |
| 4050 | 203 |
| 3800 | 202 |
| 3525 | 194 |
| 3950 | 206 |
| 3650 | 189 |
| 3650 | 195 |
| 4000 | 207 |
| 3400 | 202 |
| 3775 | 193 |
| 4100 | 210 |
| 3775 | 198 |
Direction
Positive Correlation
Negative Correlation
Form of relationship
Linear Relationship
Non-Linear Relationship
Strength of Relationship
Stronger Relationship
Weaker Relationship
Warning
In general, an increase in \(X\) does not cause a change in \(Y\). It is associated with a change in \(Y\).
\(r\) has no unit;
if \(r<0\) the variables are negatively correlated
if \(r>0\) the variables are positively correlated
\(r\approx 0\) implies very weak or no linear relationship between the variables;
Swapping the \(x\) and \(y\) variables does not affect the value of \(r\);
The value of \(r\) does not change if all values of either variable are added a constant or multiplied by a positive constant;
\(r\) is sensitive to outliers;
n = 1000; // Set the number of data points to 1000
x =
{
const values = Array(n); // Initialize an empty array for x values
for (let i = 0; i < n; i++){
values[i] = Math.random() * (900 - 300) + 300; // Generate random x values between 300 and 900
}
return values; // Return the array of x values
}
mean_x = x.reduce((a,b) => a+b, 0) / n; // Calculate the mean of x values
vx = x.reduce((a,b) => a+(b-mean_x)**2/(n-1), 0); // Calculate the variance of x values
noise =
{
const values = Array(n); // Initialize an empty array for noise values
for (let i = 0; i < n; i++){
values[i] = Math.random() * 2 - 1; // Generate random noise values between -1 and 1
}
const mean_noise = values.reduce((a,b) => a+b, 0) / n; // Calculate the mean of noise values
const vnoise = values.reduce((a,b) => a+(b-mean_noise)**2/(n-1), 0); // Calculate the variance of noise values
return values.map(item => {
return (item - mean_noise)/Math.sqrt(vnoise); // Standardize the noise values to have mean 0 and variance 1
});
}
// Create the interactive bars for size and variability
viewof corr_bar = Inputs.range([-1, 1],
{value: 0,
step: 0.0001,
label: "Correlation Coefficient: "}); // Create a slider to control the correlation coefficient
slope = {
if (corr_bar != 1 && corr_bar != -1){
return Math.sign(corr_bar) * Math.sqrt(corr_bar**2/(vx * (1-corr_bar**2))); // Calculate the slope of the regression line based on the correlation coefficient and variance of x
}
else {
return Math.sign(corr_bar) * .1; // Set a default slope if correlation is 1 or -1
}
}
y =
{
const values = Array(n); // Initialize an empty array for y values
for (let i = 0; i<n; i++){
// Calculate y values based on the regression line and scaled noise
if (corr_bar != 1 && corr_bar != -1){
values[i] = slope * x[i] + noise[i]; // Calculate y values based on the regression line and noise
}
else {
values[i] = slope * x[i]; // Calculate y values directly from x if correlation is 1 or -1
}
}
return values; // Return the array of y values
}
data =
{
const values = Array(n); // Initialize an empty array for data points
for (let i = 0; i<n; i++){
values[i] = {'x': x[i], 'y': y[i]}; // Create data points with x and y values
}
return values; // Return the array of data points
}
Plot.plot({
inset: 8, // Set the plot inset
grid: false, // Disable grid lines
marks: [
Plot.dot(data, {x: "x", y: "y"}) // Create a scatter plot of the data
],
x: {
ticks: 0, // Disable x-axis ticks
tickSize: 0, // Set x-axis tick size to 0
line: true, // Enable x-axis line
labelAnchor: "center" // Set x-axis label anchor to center
},
y: {
ticks: 0, // Disable y-axis ticks
tickSize: 0, // Set y-axis tick size to 0
line: true, // Enable y-axis line
labelAnchor: "center" // Set y-axis label anchor to center
}
});Warning
\(r\) close to zero does not imply two variables are not related. They could still have a non-linear relationship.
There could be a third variable, referred to as lurking variable, that causes changes in both, \(X\) and \(Y\).
Association does not imply causation!
© 2023 Rodolfo Lourenzutti & Eugenia Yu – Material Licensed under CC By-SA 4.0